
Laboratorio de Sistemas Eléctricos de Potencia II

Práctica 2

Semestre

2020-II

Práctica 2

Voltaje de una Línea de Transmisión

Objetivos:

- Determinar el flujo de potencial real y reactiva en una línea de transmisión trifásica con cargas pasivas.
- Determinar la regulación de voltaje en el extremo receptor, como función del tipo de carga.

Introducción:

Temas a desarrollar:

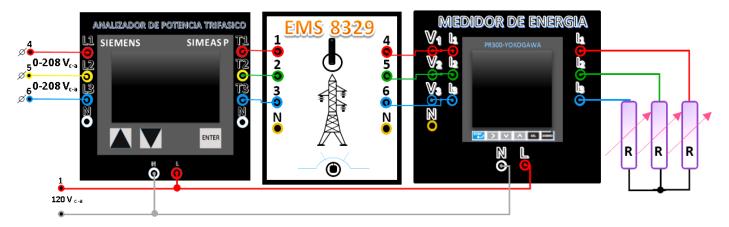
- Voltaje de transmisión.
- Línea de transmisión.
- Tipos de carga.
- Regulaciones de voltaje.

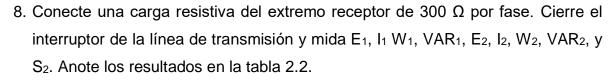
Material y Equipo:

- Analizadores de energía (Yokogawa, Simeas P o Carlo Gavazzi).
- Cables de conexiones.
- Módulo de Capacitores.
- Módulo de Inductancias.
- Módulo de línea de transmisión trifásica.
- Módulo de Resistencias.
- Módulo de suministro de energía (0-208/127 V c-a o 208/127 V c-a).
- Motor de inducción jaula de ardilla.
- Secuencímetro.

Desarrollo:

- Arme el circuito que se muestra en la figura 2.1, teniendo en cuenta que la secuencia de fase deberá ser positiva debido a que los módulos de energía no trabajan con secuencias negativas.
- 2. Seleccione la impedancia de la línea de transmisión a 180 Ω .
- 3. Conecte la carga resistiva en estrella a la salida del medidor de energía como se muestra en la figura 2.1.
- 4. Encienda la fuente de alimentación y fije el voltaje a 208V.
- 5. Con una carga resistiva de 300Ω mida y anote las lecturas para la tabla 2.1.




Figura 2.1

6. Reduzca el voltaje a 0 volts y apague la fuente de alimentación.

Carga	Emisor				Receptor					
R(Ω)	V s (V)	s (A)	P s (w)	Q _s (Var)	S _s	V _R (V)	I R (A)	P _R (W)	Q _R (VAR)	S _R (VA)
300	(-)	(-)	()	(1 3)	(11)	(-)	(- 7	(,	(1111)	(11.7)

Tabla 2.1

7. Con la línea en circuito abierto, ajuste el voltaje de la fuente, de modo que el voltaje a línea E1 sea de 150 Volts. (Mantenga este voltaje durante el resto del experimento).

	V (V)	I (A)	P (W)	Q (VAR)	S (VA)
Emisor					
Receptor					

Tabla 2.2 Valores de carga resistiva.

- 9. Reduzca el voltaje a 0 V y apague la fuente de alimentación.
- 10. Repita el procedimiento 7 y 8 pero ahora conecte una carga inductiva trifásica de 300 Ω por fases del lado del receptor, anotando los valores en la tabla 2.3.

	V (V)	I (A)	P (W)	Q (VAR)	S (VA)
Emisor					
Receptor					

Tabla 2.3 Valores con carga inductiva.

- 11. Reduzca el voltaje a 0 V c-a y apague la fuente de alimentación.
- 12. Repita el procedimiento 7 y 8 pero ahora conecte una carga capacitiva trifásica de 300 Ω por fase del lado del receptor, anotando los valores en la tabla 2.4.

	V (V)	I (A)	P (W)	Q (VAR)	S (VA)
Emisor					
Receptor					

Tabla 2.4 Valores con carga capacitiva.

- 13. Reduzca el voltaje a 0 V c-a y apague la fuente de alimentación.
- 14. Repita el procedimiento 7 y 8 pero ahora remplace la carga inductiva por un motor trifásico jaula de ardilla por fase del lado del receptor, anotando los valores en la tabla 2.5.

	V (V)	l (A)	P (W)	Q (VAR)	S (VA)
Emisor					
Receptor					

Tabla 2.5 Valores con carga capacitiva.

15. Reduzca la fuente de alimentación a 0 y apague la fuente a alimentación.

Cuestionario

1.	Calcule la potencia real y reactiva que absorbe la linea de transmision, en los
	experimentos anteriores.

2. Calcule la regulación de voltaje para cada tipo de carga conectada a la línea de transmisión a partir de la fórmula:

$$\% = \frac{E_0 - E_L}{E_0} \times 100$$

Nota: En la cual E_0 es el voltaje de circuito abierto y E_L es el voltaje bajo carga, ambos en el extremo de la carga (o receptor). Anote sus resultados.

- 3. Se conecta una línea de transmisión trifásica que tiene una reactancia de 120 Ω por fase, a una carga conectada en estrella, cuya resistencia es de 160 Ω por fase. Si el voltaje de la fuente es 70 kV línea a línea, calcular:
 - a) El voltaje línea a neutro por fase
 - b) La corriente de línea por fase.
 - c) La potencia real y reactiva suministrada a la carga.
 - d) La potencia real y reactiva que absorbe la línea.

- e) El voltaje línea a línea en la carga.
- f) La caída de voltaje por fase en la línea.
- g) La potencia total aparente suministrada por la fuente.
- h) La potencia total, real y reactiva, suministrada por la fuente.
- 4. Una línea de transmisión, que tiene 500 kilómetros de longitud, tiene una reactancia de 240 Ω por fase y una capacitancia línea a neutro de 600 Ω por fase. Su circuito equivalente por fase puede ser aproximado mediante el circuito que se muestra en la figura 2. Si el voltaje línea a línea en el extremo transmisión T es de 330 kV.
 - a) ¿Cuál es el voltaje línea a línea en el extremo receptor cuando esta desconectada la carga?
 - b) Calcular la potencia reactiva de la fuente en Kvar ¿Esta potencia es suministrada o absorbida por la fuente?

Conclusiones

Bibliografía